
Daileon: A Tool for Enabling Domain Annotations

José Roberto C. Perillo
jrcperillo@yahoo.com.br

Eduardo M. Guerra
guerraem@gmail.com

Clovis T. Fernandes
clovistf@uol.com.br

Aeronautical Institute of Technology
Praça Marechal Eduardo Gomes, 50
Vila das Acácias - CEP 12228-900
São José dos Campos - SP, Brazil

ABSTRACT
Software developers currently understand that the real com-
plexity in most applications lies in the problem domain the
software is dealing with. The approach known as domain-
driven design follows the premises that, for most software
projects, the primary focus should be on the domain and
domain logic, and that complex domain designs should be
based on a model. For this type of project, the concept of
domain annotations, which is a way to define annotations
specifically for domain objects, can be applied. Currently,
most part of metadata-based components still does not use
this concept. This paper proposes two techniques for en-
abling the use of domain annotations in new frameworks and
existing ones, and introduces the Daileon framework, which
enables such development in Java-based applications.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Object-oriented
design methods.

General Terms
Algorithms, Design, Experimentation.

Keywords
Metadata, Annotations, Domain-Driven Design, Frameworks,
Java.

1. INTRODUCTION
Over the two past decades, the software development area

evolved to a point where people have come to understand
that the real complexity, in most cases, is in understanding
the business domain itself. The approach known as domain-
driven design [4] follows the premises that, for most software
projects, the primary focus should be on the domain and
domain logic, and that complex domain designs should be
based on a model.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
RAM-SE ’09, July 7, 2009 Genova, Italy.
Copyright 2009 ACM 978-1-60558-548-2/09/07... $10.00.

In the development field, a way to provide data about
data, called metadata, is heavily used. One of the ways to
define explicit metadata is the technique called annotations,
which is available for the Java language and is a powerful
mechanism to provide metainformation about class mem-
bers, or even about classes themselves.

Some indirect problems may occur when using annota-
tions. One of the problems is that sometimes a particu-
lar class or class member requires several annotations, and
this can cause pollution of code and decrease its readabil-
ity and maintainability. Another common problem is that
annotations related to infrastructure are frequently placed
in classes related to the domain. For instance, when cre-
ating business components using EJB 3 [3] beans, methods
that should relate exclusively to the business domain end
up being annotated with annotations that are related to in-
frastructure. Another problem is that creating code that
directly uses annotations of external frameworks inevitably
leads to tight coupling between the code being created and
these frameworks. For infrastructure components that work
with crosscutting concerns, it also breaks their obliviousness.

When following the domain-driven design approach, meta-
data that is added or that belongs to the domain model can
be expressed as annotations on domain objects. A practical
way to describe these annotations is domain annotations.
The first work that proposed this term was [2], where the
author exemplifies it with a case study in .NET. The goal
of this paper is to propose two techniques for enabling do-
main annotations in Java-based applications. A framework
called Daileon [8] is currently being developed to support
such approach.

This paper is structured as follows. Section 2 addresses
the domain modeling activity. Section 3 addresses metadata
and annotations. Section 4 addresses the domain annota-
tions concept, where the Daileon framework is also intro-
duced. It is shown in its subsections how new frameworks
can offer support to domain annotations and also how to
use this concept with existing frameworks. The conclusion
of this paper is shown as a final consideration in Section 5,
where future works are also identified.

2. DOMAIN MODELING
Following the domain-driven design principles, domain mod-

eling is the most important activity. Essentially, model is an
abstraction that describes selected aspects of a domain that
are relevant to solving problems related to that domain, and
domain is the subject area to which the user applies a pro-
gram. Domain model can be defined as a rigorously and

selective abstraction of the knowledge that the domain ex-
perts have of a particular domain. Commonly, it is rep-
resented by UML’s class diagram, but it can practically be
represented by anything able to represent the domain model,
since it is not a particular diagram, but the abstraction be-
hind it. Thus, the model can be represented by a diagram,
by a graphic or even by text. Languages of a higher level of
abstraction that are able to hide the complexity of general-
purpose programming languages and that are created specif-
ically to solve problems of a domain model are known as
domain-specific languages [4].

In the domain-driven design reality, the critical complex-
ity is in understanding the domain itself, which makes the
model central to both analysis and implementation of a so-
lution. Domain modeling is about selecting the relevant as-
pects of a domain and representing them, allowing software
to enter the domain. The intimate link between model and
implementation allows verifying if the analysis that went
into the model applies to the software created and eases its
continuous maintenance and development. It also allows de-
velopers to talk about the software in the domain language,
promoting the ubiquitous language. Ultimately, if the model
is not reflected in the code, it is irrelevant.

In terms of design, the “domain layer” is the manifesta-
tion of the domain model. This layer should concentrate
all business logic, and should be isolated from other layers,
such as infrastructure or application layers. The code that
implements the domain model is where domain annotations
should be applied.

3. METADATA AND ANNOTATIONS
Metadata is essentially a way to provide data about data.

It is structured information that describes the characteristics
of a particular resource. In other words, it consists of a
number of pre-defined elements that represent the specific
attributes of a particular resource. A classical example of
metadata is a database schema.

Metadata can be represented in several different ways. For
instance, names of class elements and their types are intrin-
sic metadata. Declarative metadata is frequently stored in
XML files. Naming conventions are also a type of metadata
(i.e. the “getter” and “setter” methods of the JavaBeans
[10] convention). The annotation type, specifically for the
Java language, is a special case of metadata. It enables
attribute-oriented programming, which is a program-level
marking technique that allows developers to annotate pro-
gramming elements (i.e. classes and methods) to indicate
application-specific or domain-specific semantics [9]. This
technique was first introduced by the XDoclet [11] engine,
which allows the developer to add more significance to the
code, by adding metadata that are actually special JavaDoc
tags. The concept of attribute-oriented programming was
then introduced in the JSR 175 [1], and annotations became
part of the Java language.

Annotations do not directly affect program semantics, they
just add to the code complementary information that are
used by tools, libraries or frameworks, which can in the-
sis affect the semantics of the program. It uses a special
keyword, @interface, to be defined. It acts more like an
interface rather than a class; hence it cannot contain code,
which means that they need other code to consume them.
For the domain annotations scenario, annotations are natu-
rally the metadata type to be added to domain objects.

Some metadata-based components use annotations in do-
main classes to customize their logic properly. EJB 3, for
instance, is a framework that uses annotations to configure
variabilities in crosscutting concerns. The use of annota-
tions by aspect-oriented frameworks [6] in some cases can
reduce significantly the amount of advices and the syntactic
coupling [7]. One point to be observed when using anno-
tations in aspect-oriented frameworks is that it breaks part
of their obliviousness [5], since classes will contain explicit
information about crosscutting concerns. The use of domain
annotations in this scenario restores the aspect obliviousness
and also reduces the semantic coupling [7].

4. DOMAIN ANNOTATIONS
Creating domain annotations is a way to utilize domain-

driven design with annotations that are created for a specific
domain model implementation. With it, annotations placed
on domain objects clearly have a relationship with the do-
main itself, not with matters out of it, helping the domain
layer to be isolated from other layers. The dependency on
annotations of external frameworks that has to exist so the
application can be created is also encapsulated, which al-
lows changing them by other annotations without effectively
changing the code that implements the domain model. An-
other benefit is that having fewer annotations in the code
makes it more readable and eases its maintenance.

Essentially, domain annotations either represent metadata
that belongs to the domain or represent and replace anno-
tations that do not belong to the domain model implemen-
tation, helping the domain layer to be isolated from other
layers. For the latter case, a way to identify and interpret
these annotations is required. Therefore, this study proposes
a framework called Daileon (Domain Annotations Identifier
and LEgacy annOtations arraNger), that is being developed
to leverage such concept in Java-based applications. Until
the moment this paper was published, this framework was
still under construction. Daileon will provide mechanisms
for new frameworks to identify and interpret domain anno-
tations, and will also provide mechanisms for applications
that use existing frameworks that do not support this con-
cept, replacing domain annotations by their corresponding
annotations via bytecode manipulation. The following sub-
sections present these two approaches.

4.1 Domain Annotations for New Frameworks
One of the possible ways to create domain annotations is

when the frameworks used support their creation. In this
case, the annotations provided by these frameworks are re-
placed by domain annotations on domain objects, and these
frameworks are able to recognize the domain annotations
and identify which known annotations they represent.

In the context of the present work, the difference between
new frameworks and existing ones is that new frameworks
can be created allowing their users to create and use do-
main annotations instead of their own annotations. Figure
1 shows the technique that this paper proposes to be applied
in such cases.

The example shown in Figure 1 shows a reduced code
that illustrates how domain annotations can be created
to be used with frameworks that support their creation.
In this example, the @Administrative domain annota-
tion is annotated with two annotations of a framework
that supports the creation of domain annotations, plus

Figure 1: Domain annotations for new frameworks.

@DomainAnnotation, provided by the Daileon framework.
To support domain annotations, frameworks must allow
their annotations to annotate other annotations, and also
have to be able to distinguish which known annotations
a domain annotation corresponds to. For the latter case,
Daileon provides several ways to identify a domain anno-
tation and recognize which annotations it represents. The
@Administrative domain annotation, shown in Figure 1,
is also annotated with @DomainAnnotation so Daileon can
identify that this is a domain annotation and inform which
annotations it represents. Figure 2 shows an example of how
it can be done.

Figure 2: A framework that supports domain anno-
tations using Daileon.

In the example addressed in Figure 2, the frame-
work that supports the creation of domain annota-
tions verifies if a known annotation is present in a
method of a domain class, and for such, it uses a class
called DomainAnnotationsHelper, which is provided by
Daileon and has several static methods to identify and trans-
late domain annotations. It is also possible to annotate a
domain annotation with other domain annotations. In this
case, the domain annotations of lower level would be repre-
sented by the domain annotation of highest level.

4.2 Domain Annotations for Existing Frame-
works

The second technique proposed by this paper allows cre-
ating domain annotations in such a way that they replace
annotations of existing frameworks in the domain model im-
plementation. But since most existing frameworks do not
support this concept in any way, the domain annotations
have to be replaced by their corresponding annotations be-
fore the application is run, since these frameworks do not
expect to find annotations other than their own in the code.

Figure 3 shows the technique that this paper proposes to
be used with existing frameworks that do not support do-
main annotations. A method of a domain class is annotated
with a domain annotation, which just indicates where to find

Figure 3: Domain annotations for existing frame-
works.

its corresponding annotations (in the example shown in Fig-
ure 3, the domain annotation corresponds to annotations of
the EJB 3 API). This is necessary because, in most cases, it
is not possible to annotate an annotation with annotations
of existing frameworks, since only methods or class elements
can be annotated with them. Consequently, it is necessary
to annotate the domain annotations with annotations that
simply indicate a template class that contains the annota-
tions that are represented by the domain annotation.

Even though creating domain annotations to be used along
with frameworks that do not support their creation means
replacing their annotations by other annotations that rep-
resent them, these annotations do not have any effect in
their environment. For instance, annotating a domain class
with a domain annotation that represents annotations of the
EJB 3 API does not have any effect in the JEE container.
Therefore, a mechanism capable of translating domain an-
notations to their corresponding annotations before running
the application is necessary to enable the concept. One of
the main functionalities Daileon provides is the ability to
manipulate the bytecodes that correspond to domain anno-
tations, replacing these annotations by their corresponding
annotations. Essentially, it looks for annotations annotated
with @DomainAnnotation, reads the elements of the indi-
cated classes and translates the domain annotations to their
corresponding annotations. For such, all the developer has
to do is create a template class, annotate its elements with
annotations of existing frameworks and create the domain
annotation itself, indicating the template class, as shown
in Figure 3. It is also possible to annotate a domain class
element with two or more domain annotations, or even to
annotate a domain annotation with other domain annota-
tions.

Figure 4 shows the equivalent code of the
placeCurrentOffer method, shown in Figure 3, af-
ter Daileon is run.

5. CONCLUSION
This paper proposes two techniques for enabling the use

Figure 4: A domain annotation translated to the
known annotations of the EJB 3 API.

of domain annotations on Java-based applications: one for
new frameworks, where they support the creation of domain
annotations, and another one for existing frameworks that
do not support their creation. When creating them to be
used with new frameworks, these frameworks must allow
annotations to be annotated with their annotations and also
must be able to identify domain annotations. For existing
frameworks that do not support this concept, some bytecode
manipulation is required, in order to replace the domain
annotations by their corresponding annotations before the
application is run. The Daileon framework provides these
two functionalities, and thus enables such development.

Frequently, annotations that are related to infrastructure
are added to elements that should relate exclusively to the
domain, which shows that concerns are not clearly separate.
Sometimes, it may be necessary to annotate a class element
with several annotations, which may pollute the code and
decrease its readability and maintainability. For the domain
annotations scenario, a rich domain model is required, which
leads to the domain-driven design approach. Not only it
promotes a better object-oriented structure, it also promotes
reusability.

Domain annotations bring more quality to the code, re-
ducing the number of annotations in the domain model im-
plementation, increasing its readability and maintainability
and bringing more cohesion and consistency to the domain
model. When applied, annotations placed on domain ob-
jects clearly have a relationship with the domain itself, not
with matters out of it, and thus developers can concentrate
their efforts exclusively on business-related concerns. The
dependency on annotations of external frameworks that has
to exist so the application can be created is also encapsu-
lated, and when these frameworks have to be replaced, the
code that reflects the domain model implementation does
not have to change. At most, the domain annotations would
have to be translated again to their corresponding annota-
tions before running the application, which can be easily
done with the Daileon framework.

Future works to be done regarding domain annotations
will show the results of the usage of the techniques proposed
by this paper, using Daileon in a real application, and will
also contemplate techniques to create frameworks that sup-
port domain annotations in a clean and practical way. Other
points to be covered are how to apply domain annotations
in aspect-oriented frameworks, how to parameterize domain
annotations, and also how to create domain annotations for
parameters of domain elements.

6. REFERENCES
[1] A metadata facility for the java programming

language. http://jcp.org/en/jsr/detail?id=175, 2003.

[2] E. Doernenburg. The ThoughtWorks Anthology:
Essays on Software Technology and Innovation,
chapter 10. Pragmatic Bookshelf, Raleigh, NC, USA,
March 2008.

[3] Enterprise javabeans 3.0.
http://jcp.org/en/jsr/detail?id=220, 2006.

[4] E. Evans. Domain-Driven Design: Tackling
Complexity In the Heart of Software. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA,
2003.

[5] R. E. Filman and D. P. Friedman. Aspect-oriented
programming is quantification and obliviousness. In
Workshop on Advanced Separation of Concerns.
OOPSLA, October 2000.

[6] E. M. Guerra, J. O. Silva, F. F. Silveira, and C. T.
Fernandes. Using metadata in aspect-oriented
frameworks. In 2nd Workshop on Assessment of
Contemporary Modularization Techniques (AcoM.08).
OOPSLA, October 2008.

[7] A. C. Neto, M. de Medeiros Ribeiro, M. Dosea,
R. Bonifacio, P. Borba, and S. Soares. Semantic
dependencies and modularity of aspect-oriented
software. In ACoM ’07: Proceedings of the First
International Workshop on Assessment of
Contemporary Modularization Techniques, page 11,
Washington, DC, USA, 2007. IEEE Computer Society.

[8] J. R. C. Perillo. The daileon framework.
http://sourceforge.net/projects/daileon/, 2009.

[9] R. Rouvoy and P. Merle. Leveraging
component-oriented programming with
attribute-oriented programming. In Proceedings of the
11th International ECOOP Workshop on
Component-Oriented Programming (WCOP 2006),
Nantes, France, Jul 2006.

[10] The javabeans specification.
http://java.sun.com/javase/technologies/
desktop/javabeans/docs/spec.html.

[11] Xdoclet: Attribute-oriented programming.
http://xdoclet.sourceforge.net/xdoclet/index.html.

