

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGPLAN’05 June 12–15, 2005, Location, State, Country.
Copyright © 2004 ACM 1-59593-XXX-X/0X/000X…$5.00.

Metadata Modularization Using Domain Annotations

José Roberto

C. Perillo

Aeronautical Institute

of Technology

jrcperillo@yahoo.com.br

Eduardo M.

Guerra

Aeronautical

Institute of

Technology

guerraem@gmail.com

Jefferson O.

Silva

Aeronautical Institute

of Technology

jefferson.o.silva@uol.com.br

Fábio F.

Silveira

Federal University of

São Paulo
fsilveira@unifesp.br

Clovis T.

Fernandes

Aeronautical Institute

of Technology

clovistf@uol.com.br

Abstract

Many recent frameworks use the metadata configuration by

applying code annotations in the application classes to cus-

tomize the behavior at runtime. These annotations usually

add elements related to the infrastructure in classes that are

related to the domain. This practice makes the domain

classes coupled to the framework metadata and mix infra-

structure and domain information in the same class. This

paper presents the use of domain annotations to modularize

the metadata definition, develops a case study and uses

assessment techniques to evaluate it as a design rule.

General Terms: Measurement, Design.

Keywords Metadata; Code Annotations; Domain-Driven

Design; Frameworks;

1. Introduction

Attribute-oriented programming is a program level marking

technique that allows developers to mark programming

elements, such as classes and methods, to indicate applica-

tion-specific or domain-specific semantics [1]. In Java plat-

form, this programming style has become popular with the

native support to code annotations [2].

Metadata-based frameworks [3] are frameworks that that

process their logic based on the metadata of the classes

whose instances they are working with. In these frame-

works the metadata can be defined using attribute-oriented

programming, but also using external sources like XML

files or even by code conventions [4].

Many mature frameworks and APIs used in the industry

nowadays use code annotations, such as Hibernate [6], EJB

3 [7] and Spring Framework [8]. In these, the framework

annotations are placed in the application domain classes

and consumed by the framework at runtime. Aspect-

oriented frameworks also benefits from the use of meta-

data, especially in cases which contains many variabilities

in the same crosscutting concern [5].

Those annotations add the framework semantic, usually

related to infrastructure, to the domain classes. According

to the domain-driven design [9], this is a practice to be

avoided. Using framework specific annotations the applica-

tion also gets coupled with it. if is necessary to change to

another framework or even to another version of the same

framework usually is necessary to use some annotations

refactoring [10].

 This paper proposes the use of domain annotations [11]

supported by the Daileon framework [12] as an alternative

to modularize the metadata definition, resulting in domain

classes independent of frameworks specific annotations. It

also presents a case study where this design rule is applied

and the modularity achieved evaluated.

This paper is outlined as follows. Section 2 the main

concepts about the use of domain annotations. Section 3

presents Daileon [12], a tool used to enable the support the

use of domain annotations in frameworks that do not sup-

port it. Section 4 presents a detailed case study, suggesting

development steps for the use of domain annotations. Sec-

tion 5 uses DSMs to evaluate the modularity achieved with

the technique application. Section 6 concludes the paper

presenting the main contributions and the limitations of this

work.

2. Domain Annotations

Nowadays, it is widely accepted by the software develop-

ment community that, when solving a particular problem

by the construction of new software, the real complexity, in

most cases, is predicated on understanding the business

domain [12]. The approach known as domain-driven design

[9] provides a set of practices that helps creating, maintain-

ing and evolving software for most part of domains. One of

these practices is the technique called domain modeling,

which helps dealing with the complexity of a particular

domain. Its goal is to create an abstraction of it, contem-

plating the aspects that are relevant to the development of

the new software. Domain model is not a diagram, and thus

it can be represented by practically anything. In terms of

application code, the domain layer is the manifestation of

the domain model. It should be isolated from other layers

and should concentrate all business logic being imple-

mented by the software.

There are inevitable situations in which the purity of the

object model has to be compromised. For instance, frame-

works often require annotations to be added to code related

to the domain. The concept of domain annotations [11][12]

proposes representing domain-specific metadata via

annotations on domain objects. These annotations can be

mapped to other annotations, and thus one domain annota-

tion can represent one or several annotations.

There are several benefits from the domain annotations

concept usage: i) the code becomes cleaner with fewer an-

notations; ii) it helps keeping the domain layer isolated

from other layers; iii) annotations on domain elements

clearly have a relationship with the domain; and iv) the

dependency on external annotations that has to exist is en-

capsulated. However, the greatest values this concept pro-

vides are modularity and reusability. Mapping a domain

annotation to external annotations allows changing external

frameworks without effectively changing code related to

the domain. In order to achieve it, the domain annotations

must be translated to their corresponding annotations,

which can be done by using the Daileon framework [12],

presented in the next section.

3. Daileon Framework

The Daileon framework allows Java-based applications to

be developed using the concept of domain annotations.

Essentially, it provides two main functionalities: i) it allows

frameworks to be created with the capability of interpreting

domain annotations; and ii) it also allows domain annota-

tions to represent annotations of frameworks that do not

support such a concept. Therefore, Daileon allows frame-

works to support the concept of domain annotations and it

also allows domain annotations to be created even when

using frameworks that are not able to recognize annotations

other than their own.

3.1 Domain Annotations for New Frameworks

A framework that is capable of interpreting a domain

annotation is a framework that is able to identify which

known annotations a domain annotation corresponds to.

That means that, even if an element is annotated with an

annotation that is not known by the framework, it is still

able to recognize it and verify which known annotations it

represents, as long as this annotation is annotated with an-

notations known by the framework. Figure 1 depicts the

technique to be applied with Daileon for such cases.

/* The definition of the domain annotation */

@Retention(RetentionPolicy.RUNTIME)

@Target({ElementType.METHOD})

@DomainAnnotation

@FrameworkAnnotation1

@FrameworkAnnotation2

public @interface Adminisrative {

 // This annotation does not actually have

 // attributes. The code that consumes this

 // annotation only uses the annotations

 // defined in it.

}

// A method of a domain class,

// annotated with the domain annotation

@Administrative

public void placeCurrentOffer() {

 // A business method of a domain class.

}

Figure 1. The definition of the domain annotation.

Figure 1 shows how a domain annotation can be defined

when frameworks use Daileon to support their creation. An

annotation is annotated with two annotations of a frame-

work that is external to the domain. Since this annotation is

not known by the framework, some mechanism to recog-

nize it is required. In this case, frameworks can use the first

functionality provided by Daileon. This functionality pro-

vides several ways to recognize annotations that are not

known by frameworks and identify which known annota-

tions they correspond to. The DomainAnnotation-

sHelper class provides several static methods that

frameworks can use to identify domain annotations and

recognize which known annotations they represent.

3.2 Domain Annotations for Existing Frameworks

Currently, most part of frameworks still does not sup-

port the concept of domain annotations, which means that

they are not able to interpret annotations that are not known

by them. Consequently, replacing their annotations by do-

main annotations does not have any effect in their envi-

ronment, even if the domain annotations represent

annotations already known by them.

For these cases, the second main functionality provided

by Daileon can be used. Essentially, this functionality al-

lows translating domain annotations to their corresponding

annotations in the bytecode level. Hence, each domain an-

notation must indicate a class or class element in which

their corresponding annotations can be found. The case

study in the next section presents an example of this map-

ping.

3.3 Daileon’s Internal Behavior

When defining domain annotations to be used with ex-

isting frameworks, Daileon acts in the application classes

after the compilation process. It changes the classes’ byte-

codes to incorporate the annotations of the original frame-

works. The order of Daileon actions are shown in Figure 2.

The configuration file indicates the classes that are anno-

tated with domain annotations. In this case, each domain

annotation indicates where the annotations of the original

frameworks are located. The domain annotations are then

evaluated properly (that is, translated to the corresponding

annotations of the original frameworks) and are finally

placed in the classes’ bytecodes, adding the corresponding

annotations. Classes are then saved in a different directory,

so that the domain annotations are not replaced in the origi-

nal class files, allowing them to be replaced by other anno-

tations when necessary.

Daileon uses the ASM bytecode engineering tool [13] to

manipulate the classes’ bytecodes. Fundamentally, each

domain annotation is evaluated to annotations of existing

frameworks that do not support the creation of domain an-

notations at all. After the manipulation, the external annota-

tions are added to their corresponding elements in the code.

For frameworks that use Daileon to support the creation of

domain annotations, it provides a class called DomainAn-

notationsHelper, in order to recognize a domain an-

notation and inform which known annotations it

corresponds to.

Figure 2. Daileon actions, when translating domain annota-

tions in the bytecode.

4. Case Study

The objective of this section is to present a case study to

illustrate the use of domain annotations and to be use as a

reference for the evaluation of modularity. The case study

is a service to manage and achieve information about pa-

pers. It has concerns about transaction management, access

control and logging. EJB 3 standard annotations [7] are

used for transaction and security and the Metadata-based

Logger [5], an aspect-oriented framework, is used for log-

ging.

The following subsections describe the case study in de-

tail. Each subsection can be considered a step in the model-

ing of the domain annotations.

4.1 Service Definition

The first step for the case study is the definition of the ser-

vice API. The Figure 3 represents the source code of a

stateless session bean [7], with the method implementations

omitted, that represents the service used as case study. The

class Paper represents the paper information provided and

method names are very descriptive about their responsibili-

ties.
@Stateless

class PaperService implements PaperServiceRemote{

 public void addNewPaper(Paper p){ ...}

 public void updateExistentPaper(Paper p){ ...}

 public void deletePaper(Paper p){ ...}

 public Paper getPaperByName(String name){ ... }

 public List<Paper> listPapersByAuthor(

 String authorName){ ... }

 public List<Paper> listPapersByKeyword(

 String keyword){ ... }

 public List<Paper> listPapersByConference(

 String conferenceName){ ... }

}

Figure 3. PaperService API

4.2 Domain Annotation Definition

Analyzing the service API the methods can divided in three

different kinds: methods for data management, methods

that retrieve free information and methods that retrieve paid

information. To communicate this difference between the

methods, tree domain annotations are created to annotate

the methods: @DataManagement, @FreeQuery and

@PaidQuery. The result is represented in Figure 4.

@Stateless

class PaperService implements PaperServiceRemote{

 @DataManagement

 public void addNewPaper(Paper p){ ...}

 @DataManagement

 public void updateExistentPaper(Paper p){ ...}

 @DataManagement

 public void deletePaper(Paper p){ ...}

 @FreeQuery

 public Paper getPaperByName(String name){... }

 @PaidQuery

 public List<Paper> listPapersByAuthor(

 String authorName){ ... }

 @PaidQuery

 public List<Paper> listPapersByKeyword(

 String keyword){ ... }

 @PaidQuery

 public List<Paper> listPapersByConference(

 String conferenceName){ ... }

}

Figure 4. PaperService with Domain Annotations

It is important to notice that all the annotations are re-

lated to the domain and do not directly reference any infra-

structure service.

4.3 Non-Functional Requirements

After the domain annotations definition, it is important to

know what each one means for the other concerns, usually

related to infrastructure services and crosscutting concerns.

Follow the meaning of each annotation for transaction

management, logging and security:

• @DataManagement: It must execute inside a transaction

because data is modified; the information must be

logged in a file to be audited; and those functionalities

can only be accessed by the administrators.

• @FreeQuery: As the data is only accessed, it must not

be executed in a transaction context; there is no need for

logging; and any user, even without authentication, can

access it.

• @PaidQuery: As the data is only accessed, it must not

be executed in a transaction context; the logging must

be made in the database because it is used for charging;

and can be accessed by regular users as well by

administrators.

4.4 Annotation Mapping

The last step is to map the domain annotations to the

framework annotations. The Metadata-based Logger sup-

port natively the definition of indirect annotations and is

only necessary to put the @LogMarker annotating each

domain annotation.

The EJB 3 annotations do not support the indirect defini-

tion and Daileon [12] is used for this mapping. The Daileon

annotations indicate that the annotations defined in a

method must be copied to the methods that have that do-

main annotation. The domain annotations definition is pre-

sented in Figure 5 and the class with the annotation

template methods is presented in Figure 6.

@LogMarker(logInfo={METHOD,PARAMETER},

 logLocation={FILE})

@DomainAnnotation

@MethodTemplate(annotatedClass="AnnotationsHome",

 method="dataManagement")

public @interface DataManagement {}

@DomainAnnotation

@MethodTemplate(annotatedClass="AnnotationsHome",

 method="freeQuery")

public @interface FreeQuery {}

@LogMarker(logInfo={METHOD,PARAMETER,RETURN},

 logLocation={DATABASE})

@DomainAnnotation

@MethodTemplate(annotatedClass="AnnotationsHome",

 method="paidQuery")

public @interface PaidQuery {}

Figure 5. PaperService with Domain Annotations

public class AnnotationsHome{

 @TransactionAttribute(REQUIRED)

 @RolesAllowed({"admin"})

 public void dataManagment(){}

 @TransactionAttribute(NOT_SUPORTED)

 @PermitAll

 public void freeQuery(){}

 @TransactionAttribute(NOT_SUPORTED)

 @RolesAllowed({"admin","user"})

 public void paidQuery(){}

}

Figure 6. PaperService with Domain Annotations

5. Evaluating Modularity

The objective of this section is to present a comparison

between two approaches used by Metadata-based frame-

works [5]. It is compared metadata-based frameworks that

use traditional annotations like EJB 3 [7] and Metadata-

based Logger [5] against the ones that use domain annota-

tions like the framework presented in this paper called

Daileon [12]. The following subsections introduce the con-

cepts related to Design Structure Matrices (DSMs) and

display two DSMs for the case study presented in last sec-

tion. The first DSM shows the usage of traditional annota-

tions and the second one shows the usage of domain

annotations in order to evaluate modularity.

5.1 Design Structure Matrix and Design Rules

In simple terms a Design Structure Matrix can be defined

as a square matrix that relates its constituent elements.

More specifically, DSMs show the dependencies (relations)

among design parameters. A design parameter corresponds

to a design decision made about an aspect of a design. De-

sign parameters can be represented in various abstraction

levels. Commonly used software design parameters include

classes, packages, methods, type signatures and annota-

tions. Non-functional software requirements can also be

represented in DSMs such as concurrency, transaction

management and logging. DSMs are a good tool not only

for visualizing dependencies relationships but also for the

evaluation of software modularity.

Design parameters are disposed both in the rows and the

columns of a matrix. One parameter depends on another

one when there is a mark (typically an “X”) relating the

row to the column. That is, if there is an “X” marked on

row B and column A then it means that B depends on A.

There are basically three types of configurations that

characterize the parameters. Design parameters can have:

(i) no dependencies among them, that is, they are can be

developed in parallel; (ii) a sequential dependency, which

means that they have a pre-defined sequence for develop-

ment; and (iii) a mutual dependency in which case it is said

they are coupled. Figure 7 illustrates these situations.

Figure 7. Relationships among design parameters

Sequential and coupled design parameters represent a

problem in terms of modularity. The sequential relationship

in Figure 7 means that the B cannot be developed until the

development of A has completed. Another drawback is that

a change in A can lead to one or more changes in B. The

coupled relationship in Figure 7 represents a cyclical de-

pendency. That is, A is linked to B and vice-versa.

Neto et al [14] have analyzed two different types of de-

pendencies named as syntactic and semantic coupling. Syn-

tactic coupling occurs when one component contains a

direct reference to some other component, such as inheri-

tance, method calls, composition and so on. Semantic cou-

pling is a dependency that is not syntactically defined in the

code, so that there is no direct reference among the compo-

nents [14].

Baldwin and Clark [15] have introduced the notion of

design rules for obtaining higher software modularity. De-

sign rules can be defined as a contract among design pa-

rameters. It is worth mentioning that they must not be

considered as recommendations or development guidelines

but rigorously obeyed. This way, sequential or coupled

design parameters can be treated independently. Design

rules establish a hierarchy among other software parame-

ters. As they establish the communication among the sys-

tem modules they must be firstly addressed. As an

example, interfaces can be used to concretize the abstrac-

tion of design rules allowing two or more different modules

be developed in parallel.

Other elements can be used to represent design rules be-

sides interfaces. Annotations, for instance, can be used to

represent design rules as well. That is the case of metadata-

based frameworks, in which some specific behavior is de-

fined in the framework that interacts with some base code

via annotations.

The following subsections are going to assess modular-

ity in the direct usage of framework annotations against the

usage of domain annotations.

5.2 Evaluating Modularity with Annotations

Metadata-based frameworks take decision based on meta-

data related to the base code. The use of this approach has

represented an improvement in the modularity of the devel-

opment of frameworks [5]. Figure 8 presents a DSM con-

taining the dependencies of the PaperService. As this

section evaluates modularity of code that uses regular anno-

tations, the PaperService class presented in the DSM of

Figure 8 does not contains any domain annotations. It

represents how the PaperService class would be imple-

mented without domain annotations.

The coupling implied by the use of metadata is consid-

ered to be semantic in the same fashion that the coupling

resulted implied by the use of java reflection is considered

to be semantic. Therefore, the plus sign “+” is going to be

used to represent semantic relationship, instead of the tradi-

tional “X” sign.

Figure 8. Paper Service with regular annotations

It is important to notice that there is a difference be-

tween a base code that depends on framework annotations

and a base code that depends on domain annotations. Do-

main annotations are related to the business and therefore

allow the base code remain oblivious of any aspects other

than its own. Framework annotations are specific to the

framework and as such do not make the base code oblivi-

ous to these matters.

This approach presents basically three limitations: (i)

business classes lose their obliviousness because they con-

tains code specific to the framework. Although the cou-

pling in this case is semantic, there still code specific not

related to the domain in the class; (ii) marking the code

with lots of any kind of metadata may lead business classes

to a clutter difficult to manage; (iii) annotated methods pre-

sent patterns in the way they depend on framework annota-

tions for some specific behavior. A change in this pattern

would cause all methods that depend on it to change.

5.3 Evaluating Modularity With Domain Annotations

Domain annotations enhance application modularity. The

extra layer of indirection solves the problems arisen from

the use of regular annotations. As stated earlier, the tech-

nique consists of defining annotations related to the busi-

ness – named domain annotations – that will be mapped to

other annotations and define some specific behavior. Figure

9 depicts the PaperService class using domain annotations.

Figure 9. Paper Service with Domain Annotations

Since there is no framework annotation in the class, an

enhancement is gained in the class modularity – there are

less “+” signs marked in the matrix. As a consequence, the

code is cleaner, more comprehensible as well as more man-

ageable. Modular applications allow the parallel develop-

ment, since annotations may be considered as design rules.

Other advantage of the domain annotations technique is

that the business application can be oblivious to elements

related to any other concerns related to the framework.

6. Conclusions

This paper presented the use of domain annotations as

an alternative to the metadata modularization in applica-

tions that uses metadata-based frameworks. It also pre-

sented a case study that illustrates the use of the technique

and evaluates its modularity using DSMs. The following

are considered by the authors the main contributions of this

work:

• The development of the Daileon framework that en-

able the use of domain annotations for frameworks

that do not support it.

• The development of a case study that suggests a de-

velopment process for the use of domain annotations

and enables its evaluation.

• The evaluation of the technique using DSMs, present

how the metadata modularity and obliviousness can

be achieved using the proposed technique.

As a future work to this research line, many improve-

ments can be made to the Daileon framework to support a

more flexible metadata handling. Some examples are the

use of annotations attributes and the support of implicit

metadata like name conventions and interface implementa-

tion. Other alternatives to the annotation mapping defini-

tion, like the use of XML documents, also should be

explored.

References

[1] Wada, H.; Suzuki, J. “Modeling Turnpike Frontend System: a

Model-Driven Development Framework Leveraging UML

Metamodeling and Attribute-Oriented Programming”. In

Proc. of the 8th ACM/IEEE International Conference on

Model Driven Engineering Languages and Sytems (MoD-

ELS/UML 2005), 2005.

[2] "JSR 175 - A Metadata Facility for the Java Programming

Language", 2003. Available at:

http://www.jcp.org/en/jsr/detail?id=175.

[3] Guerra, Eduardo; Souza, Jerffeson; Fernandes, Clovis "A

Pattern Language for Metadata-based Frameworks", 16th

Conference on Pattern Languages of Programming, 2009.

[4] "Convention over Configuration", Available at:

http://softwareengineering.vazexqi.com/files/pattern.html

[5] Guerra, Eduardo; Silva, Jefferson; Silveira, Fábio; Fernandes,

Clovis "Using metadata in aspect-oriented frameworks", in

2nd Workshop on Assessment of Contemporary Modulariza-

tion Techniques (AcoM.08). OOPSLA, October 2008.

[6] Bauer, C.; King, G. “Hibernate in Action”. Manning Publica-

tions, 2004.

[7] “JSR 220: Enterprise JavaBeans 3.0”, 2006. Available on

http://www.jcp.org/en/jsr/detail?id=220.

[8] “Spring Framework”, Available at

http://www.springframework.org/.

[9] Evans, E. “Domain-Driven Design: Tackling Complexity In

the Heart of Software”. Addison-Wesley Longman Publish-

ing Co., Inc., Boston, MA, USA, 2003.

[10] Tansey, W.; Tilevich, E. “Annotation Refactoring: Inferring

Upgrade Transformations for Legacy Applications”, The In-

ternational Conference on Object Oriented Programming,

Systems, Languages and Applications - OOPSLA 2008,

Nashville, USA, 2008.

[11] E. Doernenburg. "Domain Annotations" In The Thought-

Works Anthology: Essays on Software Technology and In-

novation, chapter 10. Pragmatic Bookshelf, Raleigh, NC,

USA, March 2008.

[12] Perillo, José Roberto; Guerra, Eduardo; Fernandes, Clovis

"Daileon: A Tool for Enabling Domain Annotations", 6th

ECOOP'2009 Workshop on Reflection, AOP and Meta-Data

for Software Evolution, Genova, Italy, 7th of July 2009

[13] ASM "ASM Engineering Library", 2005.

[14] Neto, A. C., de Medeiros Ribeiro, M., D´osea, M., Bonifácio,

R., Borba, P., and Soares, S.. Semantic Dependencies and

Modularity of Aspect-Oriented Software. In 1st Workshop on

Assessment of Contemporary Modularization Techniques

(ACoM’07), in conjunction with the 29th International Con-

ference on Software Engineering, 2007

[15] Baldwin, C. Y. and Clark, K. B. Design Rules, Vol. 1: The

Power of Modularity. The MIT Press, 2000.

